Models
Model Milestones
- InternLM3: Our latest series of large language models with exceptional reasoning capabilities, leading the open-source models in this class.
- InternVL2.5: Our multimodal large model series, the first open-source model to match the performance of top proprietary models like GPT-4 and Gemini Pro.
- InternLM2.5: The previous generation of models we continue to maintain, offering highly stable and excellent performance after multiple iterations. Available in 7B and 20B model sizes, supporting 1M context length and enhanced instruction-following and tool invocation abilities.
Using the Latest Model
For multi-turn conversation APIs, use the following in the model
field:
internlm3-latest
will automatically point to the latest version in the large language model series.internvl2.5-latest
will automatically point to the latest version in the multimodal model series.
You can check the specific model version they point to by checking the ref_model
field in the response from the models API (e.g., internlm3-8b-instruct
).
Model List
Large Language Models
Model | Description | Window Length |
---|---|---|
internlm3-latest | Default points to the latest released InternLM3 model series, currently pointing to internlm3-8b-instruct | 32K |
internlm3-8b-instruct | Our latest model with leading reasoning capabilities in its scale | 32K |
internlm2.5-latest | Default points to the latest released InternLM2.5 model series, currently pointing to internlm2.5-20b-chat | 32K |
Multimodal Models
Model | Description | Context Length |
---|---|---|
internvl-latest | Points to our latest release in the InternVL series, currently internvl2.5-78b | 32K |
internvl2.5-latest | Points to our latest release in the InternVL2.5 series, currently internvl2.5-78b | 32K |
internvl2.5-78b | Our latest multimodal large model, matching the performance of top proprietary models | 32K |
Request Examples
(1) Python Example
import requests
import json
url = 'https://chat.intern-ai.org.cn/api/v1/models'
header = {
'Content-Type': 'application/json',
"Authorization": "Bearer eyJ0eXBlIjoiSl...Please provide the correct token!"
}
data = {}
res = requests.get(url, headers=header, data=json.dumps(data))
print(res.status_code)
print(res.json())
print(res.json()["data"])
(2) OpenAI SDK Example
from openai import OpenAI
client = OpenAI(
api_key="eyJ0eXBlIjoiSl...Please provide the correct token!", # Provide token here, without 'Bearer'
base_url="https://chat.intern-ai.org.cn/api/v1/",
)
models = client.models.list()
for model in models:
print(model)
(3) OpenAI CLI Example
openai -b "https://chat.intern-ai.org.cn/api/v1/"
-k "eyJ0eXBlIjoiSl...Please provide the correct token!"
api models.list
Parameter Explanation
Return Parameters
Parameter | Type | Example | Description |
---|---|---|---|
object | string | list | Data type returned, in this case, "list" |
data | object | { "id": "internlm3-latest", "object": "model", "created": 1686935002, "owned_by": "pjlab"} | Model information |
Relevant Structure Explanation
- Data Structure Explanation
Parameter | Type | Example | Description |
---|---|---|---|
id | string | internlm3-latest | Model ID |
object | string | model | Model category, always "model" |
created | int | 1677652288 | Model creation timestamp |
owned_by | string | SH-AILab | Model owner, default is "SH-AILab" |
// Request
Schema: HTTP
Path: /api/v1/models
Method: GET
Header:
sso-ak: xxxxxx
Authorization: $BearerToken
// Response
Status Code: 200
Body:
{
"object": "list",
"data": [
{
"id": "internlm3-latest",
"object": "model",
"ref_model": "internlm3-8b-instruct",
"created": 1722424576,
"owned_by": "SH-AILab"
},
{
"id": "internvl2.5-latest",
"object": "model",
"ref_model": "internvl2.5-78b",
"created": 1722424576,
"owned_by": "SH-AILab"
},
{
"id": "internlm2.5-latest",
"object": "model",
"ref_model": "internlm2.5-20b-0719",
"created": 1722424576,
"owned_by": "SH-AILab"
}
]
}